Search results for "D0 experiment"

showing 10 items of 48 documents

Search forBs0→μ+μ−andB0→μ+μ−Decays with CDF II

2011

A search has been performed for B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -} and B{sup 0} {yields} {mu}{sup +}{mu}{sup -} decays using 7 fb{sup -1} of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron collider. The observed number of B{sup 0} candidates is consistent with background-only expectations and yields an upper limit on the branching fraction of {Beta}(B{sup 0} {yields} {mu}{sup +}{mu}{sup -}) < 6.0 x 10{sup -9} at 95% confidence level. We observe an excess of B{sub s}{sup 0} candidates. The probability that the background processes alone could produce such an excess or larger is 0.27%. The probability that the combination of background and the expe…

Flight directionNuclear and High Energy PhysicsParticle physicsMesonTevatronGeneral Physics and Astronomy01 natural sciences7. Clean energyLuminosityStandard Modellaw.inventionNuclear physicsParticle decaychemistry.chemical_compoundlawTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciencesInvariant massLimit (mathematics)FermilabCollider010306 general physicsPhysicsMuon010308 nuclear & particles physicsBranching fractionSupersymmetryD0 experimentIMesCrystallographychemistryDecay lengthHigh Energy Physics::ExperimentLeptonPhysical Review Letters
researchProduct

Combined search for the Higgs boson with the D0 experiment

2013

We perform a combination of searches for standard model Higgs boson production in $p\bar{p}$ collisions recorded by the D0 detector at the Fermilab Tevatron Collider at a center of mass energy of $\sqrt{s}=1.96$ TeV. The different production and decay channels have been analyzed separately, with integrated luminosities of up to 9.7 fb$^{-1}$ and for Higgs boson masses $90\leq M_H \leq 200$ GeV. We combine these final states to achieve optimal sensitivity to the production of the Higgs boson. We also interpret the combination in terms of models with a fourth generation of fermions, and models with suppressed Higgs boson couplings to fermions. The result excludes a standard model Higgs boson …

Nuclear and High Energy PhysicsParticle physicsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::LatticeTevatronFOS: Physical sciences01 natural sciencesStandard ModelHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Fermilab010306 general physicsNuclear ExperimentPhysicsCondensed Matter::Quantum GasesLarge Hadron Collider010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFermionD0 experimentSearch for the Higgs bosonExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHiggs bosonHigh Energy Physics::Experiment
researchProduct

Search for associated production of charginos and neutralinos in the trilepton final state using 2.3 fb-1 of data

2009

We report the results of a search for associated production of charginos and neutralinos using a data set corresponding to an integrated luminosity of 2.3 fb-1 collected with the D0 experiment during Run II of the Tevatron proton-antiproton collider. Final states containing three charged leptons and missing transverse energy are probed for a signal from supersymmetry with four dedicated trilepton event selections. No evidence for a signal is observed, and we set limits on the product of production cross section and leptonic branching fraction. Within minimal supergravity, these limits translate into bounds on m_0 and m_1/2 that are well beyond existing limits.

Nuclear and High Energy PhysicsParticle physicsTevatronFOS: Physical sciences7. Clean energy01 natural sciencesHigh Energy Physics - Experimentlaw.inventionNuclear physicsHigh Energy Physics - Experiment (hep-ex)law0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsColliderPhysicsLuminosity (scattering theory)010308 nuclear & particles physicsBranching fractionSupergravityHigh Energy Physics::PhenomenologySupersymmetryD0 experimentExperimental High Energy PhysicsHigh Energy Physics::ExperimentLepton
researchProduct

Measurement of the top quark mass in the dilepton channel

2007

We present a measurement of the top quark mass in the dilepton channel based on approximately 370/pb of data collected by the D0 experiment during Run II of the Fermilab Tevatron collider. We employ two different methods to extract the top quark mass. We show that both methods yield consistent results using ensemble tests of events generated with the D0 Monte Carlo simulation. We combine the results from the two methods to obtain a top quark mass m_t = 178.1 +/- 8.2 GeV. The statistical uncertainty is 6.7 GeV and the systematic uncertainty is 4.8 GeV.

Nuclear and High Energy PhysicsParticle physicsTop quarkMonte Carlo methodTevatronFOS: Physical sciences01 natural sciencesBottom quarkHigh Energy Physics - Experimentlaw.inventionNuclear physicsHigh Energy Physics - Experiment (hep-ex)law0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Physics::Atomic and Molecular ClustersFermilab010306 general physicsColliderNuclear ExperimentPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyD0 experimentNonlinear Sciences::Exactly Solvable and Integrable SystemsExperimental High Energy PhysicsHigh Energy Physics::ExperimentCommunication channel
researchProduct

Electron and Photon Identification in the D0 Experiment

2013

The electron and photon reconstruction and identification algorithms used by the D0 Collaboration at the Fermilab Tevatron collider are described. The determination of the electron energy scale and resolution is presented. Studies of the performance of the electron and photon reconstruction and identification are summarized.

Nuclear and High Energy PhysicsPhotonMonte Carlo methodTevatronFOS: Physical sciencesElectron01 natural sciencesHigh Energy Physics - Experimentlaw.inventionNuclear physicsHigh Energy Physics - Experiment (hep-ex)law0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Fermilab010306 general physicsColliderInstrumentationPhysics010308 nuclear & particles physicsResolution (electron density)D0 experiment3. Good healthExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGPhysics::Accelerator PhysicsHigh Energy Physics::Experiment
researchProduct

The upgraded DO detector

2006

The DØ experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of s…

Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsTevatron01 natural sciencesParticle detectorlaw.inventionNuclear physicsData acquisitionlaw0103 physical sciencesFermilab010306 general physicsColliderInstrumentationPhysics010308 nuclear & particles physicsbusiness.industryDetectorElectrical engineeringParticle acceleratorD0 experimentExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGPhysics::Accelerator PhysicsHigh Energy Physics::Experimentbusiness
researchProduct

Measurement of the mass of the D^{0} meson

2013

We report a measurement of the D-0 meson mass using the decay chain D* (2010) + -> D-0 pi(+) with D-0 -> K-K-K+pi(+). The data were recorded with the BABAR detector at center-of-mass energies at and near the Upsilon(4S) resonance, and correspond to an integrated luminosity of approximately 477 fb(-1). We obtain m(D-0) (1864: 841 +/- 0: 048 +/- 0: 063) MeV, where the quoted errors are statistical and systematic, respectively. The uncertainty of this measurement is half that of the best previous measurement.

Particle physicsNuclear and High Energy PhysicsMesonElectron–positron annihilationFOS: Physical sciencesCharmed mesonsPACS: 13.25.Ft 14.40.Lb01 natural sciencesLuminosityHigh Energy Physics - ExperimentNuclear physicsBabar detectorHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Mesons (Nuclear physics)Mesons (Física nuclear)010306 general physicsDecays of charmed mesonsPhysicsDecays of charmed meson010308 nuclear & particles physicsDetectorParticle physicsResonanceD0 experimentMassa (Física)HEPDecays of charmed mesons; Charmed mesonsBaBarFísica nuclearDecay chainMass (Physics)Física de partículesExperiments
researchProduct

Search for theX(4140)state inB+→J/ψϕK+decays

2012

We investigate the decay B+ -> J/psi phi K+ in a search for the X(4140) state, a narrow threshold resonance in the J/psi phi system. The data sample corresponds to an integrated luminosity of 10.4 fb(-1) of p (p) over bar collisions at root s = 1.96 TeV collected by the D0 experiment at the Fermilab Tevatron collider. We observe a mass peak with a statistical significance of 3.1 standard deviations and measure its invariant mass to be M = 4159.0 +/- 4.3(stat) +/- 6.6(syst) MeV and its width to be Gamma = 19.9 +/- 12.6(stat)(-8.0)(+3.0)(syst) MeV.

Particle physicsNuclear and High Energy PhysicsTevatronAnalytical chemistryAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energy01 natural scienceslaw.inventionNuclear physicslaw0103 physical sciencesInvariant massB mesonFermilabNuclear ExperimentCollider010306 general physicsPhysicsLuminosity (scattering theory)Branching fraction010308 nuclear & particles physicsResonanceState (functional analysis)D0 experimentPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentAtomic physicsProduction ratePhysical Review D
researchProduct

Search for new fermions ("quirks") at the Fermilab Tevatron Collider

2010

We report results of a search for particles with anomalously high ionization in events with a high transverse energy jet and large missing transverse energy in $2.4$ fb$^{-1}$ of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron $p\bar{p}$ collider. Production of such particles (quirks) is expected in scenarios with extra QCD-like {\it SU(N)} sectors, and this study is the first dedicated search for such signatures. We find no evidence of a signal and set a lower mass limit of 107 ~GeV for the mass of a charged quirk with strong dynamics scale $\Lambda$ in the range from 10 keV to 1 MeV.

Particle physicsTevatronGeneral Physics and AstronomyFOS: Physical sciences7. Clean energy01 natural sciencesHigh Energy Physics - Experimentlaw.inventionNuclear physicsHigh Energy Physics - Experiment (hep-ex)law0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]14.80.Ly 12.60.Jv 13.85.RmFermilab010306 general physicsColliderNuclear ExperimentQuantum chromodynamicsPhysicsLuminosity (scattering theory)010308 nuclear & particles physicsFermionD0 experimentProduction (computer science)High Energy Physics::Experiment
researchProduct

Measurement of the Top Quark Mass Using the Matrix Element Technique in Dilepton Final States

2016

We present a measurement of the top quark mass in ppbar collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7 fb-1. The matrix element technique is applied to ttbar events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton + jets final state of ttbar decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt = 173.93 +- 1.84 GeV.

Particle physicsTop quarkCOLLISIONSPAIR PRODUCTIONJET IDENTIFICATIONAstrophysics::High Energy Astrophysical PhenomenaTevatronFOS: Physical sciencesJet (particle physics)Astronomy & Astrophysics01 natural sciencesD0 EXPERIMENTlaw.inventionPhysics Particles & FieldsHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0202 Atomic Molecular Nuclear Particle And Plasma Physicslaw0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]HADRON COLLIDERSFermilabHigh Energy Physics010306 general physicsColliderRUN-IIDETECTOR0206 Quantum PhysicsPhysicsScience & Technology010308 nuclear & particles physicsPhysicsSEMILEPTONIC DECAYSHigh Energy Physics::PhenomenologyD0 experimentNuclear & Particles Physics0201 Astronomical And Space SciencesPair productionPhysical SciencesExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHigh Energy Physics::ExperimentCROSS-SECTIONLepton
researchProduct